\(\int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx\) [505]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 253 \[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\frac {2 \left (1+x^3\right )}{\sqrt {1+x} \left (1+\sqrt {3}+x\right ) \sqrt {1-x+x^2}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}}+\frac {2 \sqrt {2} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}} \]

[Out]

2*(x^3+1)/(1+x+3^(1/2))/(1+x)^(1/2)/(x^2-x+1)^(1/2)+2/3*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2
^(1/2)*(1+x)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^2-x+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-3^(
1/4)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(1+x)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+
x+3^(1/2))^2)^(1/2)/(x^2-x+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {823, 309, 224, 1891} \[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\frac {2 \sqrt {2} \sqrt {x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^2-x+1}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^2-x+1}}+\frac {2 \left (x^3+1\right )}{\sqrt {x+1} \left (x+\sqrt {3}+1\right ) \sqrt {x^2-x+1}} \]

[In]

Int[x/(Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

(2*(1 + x^3))/(Sqrt[1 + x]*(1 + Sqrt[3] + x)*Sqrt[1 - x + x^2]) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[
(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(Sq
rt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) + (2*Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] +
x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[
3] + x)^2]*Sqrt[1 - x + x^2])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 823

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[
(d + e*x)^FracPart[p]*((a + b*x + c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p]), Int[(f + g*x)*(a*d + c*e*x^
3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[m, p] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {1+x^3} \int \frac {x}{\sqrt {1+x^3}} \, dx}{\sqrt {1+x} \sqrt {1-x+x^2}} \\ & = \frac {\sqrt {1+x^3} \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx}{\sqrt {1+x} \sqrt {1-x+x^2}}+\frac {\left (\left (-1+\sqrt {3}\right ) \sqrt {1+x^3}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{\sqrt {1+x} \sqrt {1-x+x^2}} \\ & = \frac {2 \left (1+x^3\right )}{\sqrt {1+x} \left (1+\sqrt {3}+x\right ) \sqrt {1-x+x^2}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}}+\frac {2 \sqrt {2} \sqrt {1+x} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1-x+x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.74 (sec) , antiderivative size = 375, normalized size of antiderivative = 1.48 \[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\frac {(1+x)^{3/2} \left (\frac {12 \sqrt {-\frac {i}{3 i+\sqrt {3}}} \left (1-x+x^2\right )}{(1+x)^2}+\frac {3 \sqrt {2} \left (1-i \sqrt {3}\right ) \sqrt {\frac {3 i+\sqrt {3}-\frac {6 i}{1+x}}{3 i+\sqrt {3}}} \sqrt {\frac {-3 i+\sqrt {3}+\frac {6 i}{1+x}}{-3 i+\sqrt {3}}} E\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {1+x}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {1+x}}+\frac {i \sqrt {2} \left (3 i+\sqrt {3}\right ) \sqrt {\frac {3 i+\sqrt {3}-\frac {6 i}{1+x}}{3 i+\sqrt {3}}} \sqrt {\frac {-3 i+\sqrt {3}+\frac {6 i}{1+x}}{-3 i+\sqrt {3}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {6 i}{3 i+\sqrt {3}}}}{\sqrt {1+x}}\right ),\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )}{\sqrt {1+x}}\right )}{6 \sqrt {-\frac {i}{3 i+\sqrt {3}}} \sqrt {1-x+x^2}} \]

[In]

Integrate[x/(Sqrt[1 + x]*Sqrt[1 - x + x^2]),x]

[Out]

((1 + x)^(3/2)*((12*Sqrt[(-I)/(3*I + Sqrt[3])]*(1 - x + x^2))/(1 + x)^2 + (3*Sqrt[2]*(1 - I*Sqrt[3])*Sqrt[(3*I
 + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3*I + Sqrt[3])]*EllipticE
[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] + (I*Sqrt[
2]*(3*I + Sqrt[3])*Sqrt[(3*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))
/(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3*I + Sqrt[3])/(3*I - Sqrt[
3])])/Sqrt[1 + x]))/(6*Sqrt[(-I)/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2])

Maple [A] (verified)

Time = 0.68 (sec) , antiderivative size = 202, normalized size of antiderivative = 0.80

method result size
elliptic \(\frac {2 \left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) E\left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) F\left (\sqrt {\frac {1+x}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right ) \sqrt {\left (1+x \right ) \left (x^{2}-x +1\right )}}{\sqrt {x^{3}+1}\, \sqrt {1+x}\, \sqrt {x^{2}-x +1}}\) \(202\)
default \(\frac {\sqrt {1+x}\, \sqrt {x^{2}-x +1}\, \left (-3+i \sqrt {3}\right ) \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \left (i E\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) \sqrt {3}-i F\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) \sqrt {3}+3 E\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )-F\left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )\right )}{2 x^{3}+2}\) \(275\)

[In]

int(x/(1+x)^(1/2)/(x^2-x+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x
-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*((-3/2-1/2*I*3^(1/2))*EllipticE(((1+x)/(3/2-1/2*
I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+(1/2+1/2*I*3^(1/2))*EllipticF(((1+x)/(3/2
-1/2*I*3^(1/2)))^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)))*((1+x)*(x^2-x+1))^(1/2)/(1+x)^(1/2)
/(x^2-x+1)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 9, normalized size of antiderivative = 0.04 \[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=-2 \, {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) \]

[In]

integrate(x/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="fricas")

[Out]

-2*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x))

Sympy [F]

\[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\int \frac {x}{\sqrt {x + 1} \sqrt {x^{2} - x + 1}}\, dx \]

[In]

integrate(x/(1+x)**(1/2)/(x**2-x+1)**(1/2),x)

[Out]

Integral(x/(sqrt(x + 1)*sqrt(x**2 - x + 1)), x)

Maxima [F]

\[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\int { \frac {x}{\sqrt {x^{2} - x + 1} \sqrt {x + 1}} \,d x } \]

[In]

integrate(x/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(x^2 - x + 1)*sqrt(x + 1)), x)

Giac [F]

\[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\int { \frac {x}{\sqrt {x^{2} - x + 1} \sqrt {x + 1}} \,d x } \]

[In]

integrate(x/(1+x)^(1/2)/(x^2-x+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(x^2 - x + 1)*sqrt(x + 1)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\sqrt {1+x} \sqrt {1-x+x^2}} \, dx=\int \frac {x}{\sqrt {x+1}\,\sqrt {x^2-x+1}} \,d x \]

[In]

int(x/((x + 1)^(1/2)*(x^2 - x + 1)^(1/2)),x)

[Out]

int(x/((x + 1)^(1/2)*(x^2 - x + 1)^(1/2)), x)